[Tuto diy] Fabriquer sonde radio Oregon a 5€ pour les nuls

les autres capteurs : Sondes Météo, switches
Répondre
mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

[Tuto diy] Fabriquer sonde radio Oregon a 5€ pour les nuls

Message par mulot35 » 03 févr. 2015, 18:28

Salut ,
Ci dessous un pseudo tuto pour mes confrères qui comme moi découvre l'arduino.
Votre sonde a base de dht11, dht22 ds18b20 seras reconnu comme un sonde Oregon.

L'article du Pro:
-dht11 + attiny85 (script oregon) + rf433 => http://labalec.fr/erwan/?p=1534
-DS18B20 + attiny85 (script oregon) +rf433 =>http://labalec.fr/erwan/?p=1520

Commande:
A prendre une fois:
-UNO R3 MEGA328P ATMEGA16U2 for Arduino Compatible env 7$ sur aliexpress
A prendre pour une sonde:
-Attiny 85 env 1,15$
-Sonde pas chère env 1,5$
-Un support pile 1.28$ (qui prendra je l'espère 3 piles et le circuit)
Image

La base:
1-Télécharger et installer le logiciel Arduino
http://arduino.cc/download.php?f=/ardui ... indows.exe
2-Brancher l'arduino
3-Vérifier dans le gestionnaire de périphérique que l'arduino est bien reconnu
=>Si non reconnu installer le driver et allez pointer sur le dossier fraichement installé dans le dossier driver (c:program files/arduino/drivers)
=>Vous pouvez en profiter pour regarder le port com de l'arduino (dans Ports(com et LPT))
4-Débrancher / redemarrer
5-Pour que la carte Arduino Uno soit capable de programmer un Attiny il faut le lui dire.
- Branchez la carte Arduino Uno au port USB de votre ordinateur
- Lancer le programme Arduino
- Allez dans ( outils/port série) sélectionnez le port COM sur le quel est connecté la carte Arduino.
- Allez dans ( Fichier/exemple) et cliquez sur ( ArduinoISP )
- Dans la nouvelle fenetre allez dans ( Outils/Type de carte) cliquez sur ( Arduino Uno )
- Allez dans ( Fichier ) cliquez sur Téléverser
=>Téléversement terminé
- Fermer les deux fenetres
__________________________________________________________________________________________
DTH11
1-Copier le script http://labalec.fr/erwan/wp-content/uplo ... _dht11.txt

Code : Tout sélectionner

/*
 * connectingStuff, Oregon Scientific v2.1 Emitter
 * http://connectingstuff.net/blog/encodage-protocoles-oregon-scientific-sur-arduino/
 *
 * Copyright (C) 2013 olivier.lebrun@gmail.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
*/



#include <avr/sleep.h>
#include <avr/wdt.h>

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

volatile boolean f_wdt = 1;

#include <dht11.h>
#define DHT11PIN PB1
dht11 DHT11;


#include <SoftwareSerial.h>
#define SERIAL_RX PB3 //pin 2 //INPUT
#define SERIAL_TX PB4 //pin 3 //OUTPUT
SoftwareSerial TinySerial(SERIAL_RX, SERIAL_TX); // RX, TX


//#define THN132N
 
const byte TX_PIN = 0;

 
const unsigned long TIME = 512;
const unsigned long TWOTIME = TIME*2;
 
#define SEND_HIGH() digitalWrite(TX_PIN, HIGH)
#define SEND_LOW() digitalWrite(TX_PIN, LOW)
 
// Buffer for Oregon message
#ifdef THN132N
  byte OregonMessageBuffer[8];
#else
  byte OregonMessageBuffer[9];
#endif
 
/**
 * \brief    Send logical "0" over RF
 * \details  azero bit be represented by an off-to-on transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first 
 */
inline void sendZero(void) 
{
  SEND_HIGH();
  delayMicroseconds(TIME);
  SEND_LOW();
  delayMicroseconds(TWOTIME);
  SEND_HIGH();
  delayMicroseconds(TIME);
}
 
/**
 * \brief    Send logical "1" over RF
 * \details  a one bit be represented by an on-to-off transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first 
 */
inline void sendOne(void) 
{
   SEND_LOW();
   delayMicroseconds(TIME);
   SEND_HIGH();
   delayMicroseconds(TWOTIME);
   SEND_LOW();
   delayMicroseconds(TIME);
}
 
/**
* Send a bits quarter (4 bits = MSB from 8 bits value) over RF
*
* @param data Source data to process and sent
*/
 
/**
 * \brief    Send a bits quarter (4 bits = MSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterMSB(const byte data) 
{
  (bitRead(data, 4)) ? sendOne() : sendZero();
  (bitRead(data, 5)) ? sendOne() : sendZero();
  (bitRead(data, 6)) ? sendOne() : sendZero();
  (bitRead(data, 7)) ? sendOne() : sendZero();
}
 
/**
 * \brief    Send a bits quarter (4 bits = LSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterLSB(const byte data) 
{
  (bitRead(data, 0)) ? sendOne() : sendZero();
  (bitRead(data, 1)) ? sendOne() : sendZero();
  (bitRead(data, 2)) ? sendOne() : sendZero();
  (bitRead(data, 3)) ? sendOne() : sendZero();
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Send a buffer over RF
 * \param    data   Data to send
 * \param    size   size of data to send
 */
void sendData(byte *data, byte size)
{
  for(byte i = 0; i < size; ++i)
  {
    sendQuarterLSB(data[i]);
    sendQuarterMSB(data[i]);
  }
}
 
/**
 * \brief    Send an Oregon message
 * \param    data   The Oregon message
 */
void sendOregon(byte *data, byte size)
{
    sendPreamble();
    //sendSync();
    sendData(data, size);
    sendPostamble();
}
 
/**
 * \brief    Send preamble
 * \details  The preamble consists of 16 "1" bits
 */
inline void sendPreamble(void)
{
  byte PREAMBLE[]={0xFF,0xFF};
  sendData(PREAMBLE, 2);
}
 
/**
 * \brief    Send postamble
 * \details  The postamble consists of 8 "0" bits
 */
inline void sendPostamble(void)
{
#ifdef THN132N
  sendQuarterLSB(0x00);
#else
  byte POSTAMBLE[]={0x00};
  sendData(POSTAMBLE, 1);  
#endif
}
 
/**
 * \brief    Send sync nibble
 * \details  The sync is 0xA. It is not use in this version since the sync nibble
 * \         is include in the Oregon message to send.
 */
inline void sendSync(void)
{
  sendQuarterLSB(0xA);
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Set the sensor type
 * \param    data       Oregon message
 * \param    type       Sensor type
 */
inline void setType(byte *data, byte* type) 
{
  data[0] = type[0];
  data[1] = type[1];
}
 
/**
 * \brief    Set the sensor channel
 * \param    data       Oregon message
 * \param    channel    Sensor channel (0x10, 0x20, 0x30)
 */
inline void setChannel(byte *data, byte channel) 
{
    data[2] = channel;
}
 
/**
 * \brief    Set the sensor ID
 * \param    data       Oregon message
 * \param    ID         Sensor unique ID
 */
inline void setId(byte *data, byte ID) 
{
  data[3] = ID;
}
 
/**
 * \brief    Set the sensor battery level
 * \param    data       Oregon message
 * \param    level      Battery level (0 = low, 1 = high)
 */
void setBatteryLevel(byte *data, byte level)
{
  if(!level) data[4] = 0x0C;
  else data[4] = 0x00;
}
 
/**
 * \brief    Set the sensor temperature
 * \param    data       Oregon message
 * \param    temp       the temperature
 */
void setTemperature(byte *data, float temp) 
{
  // Set temperature sign
  if(temp < 0)
  {
    data[6] = 0x08;
    temp *= -1;  
  }
  else
  {
    data[6] = 0x00;
  }
 
  // Determine decimal and float part
  int tempInt = (int)temp;
  int td = (int)(tempInt / 10);
  int tf = (int)round((float)((float)tempInt/10 - (float)td) * 10);
 
  int tempFloat =  (int)round((float)(temp - (float)tempInt) * 10);
 
  // Set temperature decimal part
  data[5] = (td << 4);
  data[5] |= tf;
 
  // Set temperature float part
  data[4] |= (tempFloat << 4);
}
 
/**
 * \brief    Set the sensor humidity
 * \param    data       Oregon message
 * \param    hum        the humidity
 */
void setHumidity(byte* data, byte hum)
{
    data[7] = (hum/10);
    data[6] |= (hum - data[7]*10) << 4;
}
 
/**
 * \brief    Sum data for checksum
 * \param    count      number of bit to sum
 * \param    data       Oregon message
 */
int Sum(byte count, const byte* data)
{
  int s = 0;
 
  for(byte i = 0; i<count;i++)
  {
    s += (data[i]&0xF0) >> 4;
    s += (data[i]&0xF);
  }
 
  if(int(count) != count)
    s += (data[count]&0xF0) >> 4;
 
  return s;
}
 
/**
 * \brief    Calculate checksum
 * \param    data       Oregon message
 */
void calculateAndSetChecksum(byte* data)
{
#ifdef THN132N
    int s = ((Sum(6, data) + (data[6]&0xF) - 0xa) & 0xff);
 
    data[6] |=  (s&0x0F) << 4;     data[7] =  (s&0xF0) >> 4;
#else
    data[8] = ((Sum(8, data) - 0xa) & 0xFF);
#endif
}
 

 
/******************************************************************/
 
void setup()
{
  setup_watchdog(9);
  //pinMode(PB3, OUTPUT);
  //digitalWrite(PB3,HIGH);delay(500);
  //digitalWrite(PB3,LOW);delay(500);
  //digitalWrite(PB3,HIGH);
  pinMode(TX_PIN, OUTPUT);
  
 
 pinMode(PB4, OUTPUT); //tx
  TinySerial.begin(9600);
  TinySerial.println("\n[Oregon V2.1 encoder]");
 
  SEND_LOW(); 
 
  
#ifdef THN132N  
  // Create the Oregon message for a temperature only sensor (TNHN132N)
  byte ID[] = {0xEA,0x4C};
#else
  // Create the Oregon message for a temperature/humidity sensor (THGR2228N)
  byte ID[] = {0x1A,0x2D};
#endif  
 
  setType(OregonMessageBuffer, ID);
  setChannel(OregonMessageBuffer, 0x20);
  setId(OregonMessageBuffer, 0xEE);
}


// set system into the sleep state 
// system wakes up when wtchdog is timed out
void system_sleep() {
  cbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter OFF

  set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
  sleep_enable();

  sleep_mode();                        // System sleeps here

  sleep_disable();                     // System continues execution here when watchdog timed out 
  sbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter ON
}

// 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(int ii) {

  byte bb;
  int ww;
  if (ii > 9 ) ii=9;
  bb=ii & 7;
  if (ii > 7) bb|= (1<<5);
  bb|= (1<<WDCE);
  ww=bb;

  MCUSR &= ~(1<<WDRF);
  // start timed sequence
  WDTCR |= (1<<WDCE) | (1<<WDE);
  // set new watchdog timeout value
  WDTCR = bb;
  WDTCR |= _BV(WDIE);
}
  
// Watchdog Interrupt Service / is executed when watchdog timed out
ISR(WDT_vect) {
  f_wdt=1;  // set global flag
}

 
void loop()
{
  int chk = DHT11.read(DHT11PIN);

   switch (chk)
  {
    case DHTLIB_OK:
      TinySerial.println("OK");
      break;
    case DHTLIB_ERROR_CHECKSUM:
      TinySerial.println("Checksum error");
      break;
    case DHTLIB_ERROR_TIMEOUT:
      TinySerial.println("Time out error");
      break;
    default:
      TinySerial.println("Unknown error");
      break;
  }
   
  TinySerial.print("Temperature : ");TinySerial.print(DHT11.temperature);TinySerial.write(176); // caractère °
  TinySerial.write('C'); TinySerial.println();
  TinySerial.print("Humidity : ");TinySerial.print(DHT11.humidity);
  TinySerial.write('%'); TinySerial.println();

  // (ie: 1wire DS18B20 for température, ...)
  setBatteryLevel(OregonMessageBuffer, 0); // 0 : low, 1 : high
  setTemperature(OregonMessageBuffer, DHT11.temperature);
 
#ifndef THN132N
  // Set Humidity
  setHumidity(OregonMessageBuffer, DHT11.humidity);
#endif  
 
  // Calculate the checksum
  calculateAndSetChecksum(OregonMessageBuffer);
 
  // Show the Oregon Message
  for (byte i = 0; i < sizeof(OregonMessageBuffer); ++i)   {     
    //TinySerial.print(OregonMessageBuffer[i] >> 4, HEX);
    //TinySerial.print(OregonMessageBuffer[i] & 0x0F, HEX);
  }
 
  // Send the Message over RF
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
  // Send a "pause"
  SEND_LOW();
  delayMicroseconds(TWOTIME*8);
  // Send a copie of the first message. The v2.1 protocol send the
  // message two time 
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
 
  // Wait for 30 seconds before send a new message 
  SEND_LOW();
  //

  //9 secs * 6 = 54 secs
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  //
  //delay(30000);
  
}
2-Lancer arduino et coller le script fraichement copier.
3-faire un fichier enregistrer sous mes documents/arduino/rf433_sendOOK_at85_dht11.ino
4-Dans mes documents/arduino/libraries cree un dossier dht11
5-Dans dht11 cree 2 fichier txt dht11h.txt et un dht11cpp.txt
6-Dans dht11h.txt coller le script du meme nom trouvé ici http://playground.arduino.cc/Main/DHT11Lib ou ci dessous puis enregistrer et le renommer en dht11.h

Code : Tout sélectionner

// 
//    FILE: dht11.h
// VERSION: 0.4.1
// PURPOSE: DHT11 Temperature & Humidity Sensor library for Arduino
// LICENSE: GPL v3 (http://www.gnu.org/licenses/gpl.html)
//
// DATASHEET: http://www.micro4you.com/files/sensor/DHT11.pdf
//
//     URL: http://playground.arduino.cc/Main/DHT11Lib
//
// HISTORY:
// George Hadjikyriacou - Original version
// see dht.cpp file
// 

#ifndef dht11_h
#define dht11_h

#if defined(ARDUINO) && (ARDUINO >= 100)
#include <Arduino.h>
#else
#include <WProgram.h>
#endif

#define DHT11LIB_VERSION "0.4.1"

#define DHTLIB_OK				0
#define DHTLIB_ERROR_CHECKSUM	-1
#define DHTLIB_ERROR_TIMEOUT	-2

class dht11
{
public:
    int read(int pin);
	int humidity;
	int temperature;
};
#endif
//
// END OF FILE
//

8-Meme chose pour le cpp

Code : Tout sélectionner

//
//    FILE: dht11.cpp
// VERSION: 0.4.1
// PURPOSE: DHT11 Temperature & Humidity Sensor library for Arduino
// LICENSE: GPL v3 (http://www.gnu.org/licenses/gpl.html)
//
// DATASHEET: http://www.micro4you.com/files/sensor/DHT11.pdf
//
// HISTORY:
// George Hadjikyriacou - Original version (??)
// Mod by SimKard - Version 0.2 (24/11/2010)
// Mod by Rob Tillaart - Version 0.3 (28/03/2011)
// + added comments
// + removed all non DHT11 specific code
// + added references
// Mod by Rob Tillaart - Version 0.4 (17/03/2012)
// + added 1.0 support
// Mod by Rob Tillaart - Version 0.4.1 (19/05/2012)
// + added error codes
//

#include "dht11.h"

// Return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_TIMEOUT
int dht11::read(int pin)
{
	// BUFFER TO RECEIVE
	uint8_t bits[5];
	uint8_t cnt = 7;
	uint8_t idx = 0;

	// EMPTY BUFFER
	for (int i=0; i< 5; i++) bits[i] = 0;

	// REQUEST SAMPLE
	pinMode(pin, OUTPUT);
	digitalWrite(pin, LOW);
	delay(18);
	digitalWrite(pin, HIGH);
	delayMicroseconds(40);
	pinMode(pin, INPUT);

	// ACKNOWLEDGE or TIMEOUT
	unsigned int loopCnt = 10000;
	while(digitalRead(pin) == LOW)
		if (loopCnt-- == 0) return DHTLIB_ERROR_TIMEOUT;

	loopCnt = 10000;
	while(digitalRead(pin) == HIGH)
		if (loopCnt-- == 0) return DHTLIB_ERROR_TIMEOUT;

	// READ OUTPUT - 40 BITS => 5 BYTES or TIMEOUT
	for (int i=0; i<40; i++)
	{
		loopCnt = 10000;
		while(digitalRead(pin) == LOW)
			if (loopCnt-- == 0) return DHTLIB_ERROR_TIMEOUT;

		unsigned long t = micros();

		loopCnt = 10000;
		while(digitalRead(pin) == HIGH)
			if (loopCnt-- == 0) return DHTLIB_ERROR_TIMEOUT;

		if ((micros() - t) > 40) bits[idx] |= (1 << cnt);
		if (cnt == 0)   // next byte?
		{
			cnt = 7;    // restart at MSB
			idx++;      // next byte!
		}
		else cnt--;
	}

	// WRITE TO RIGHT VARS
        // as bits[1] and bits[3] are allways zero they are omitted in formulas.
	humidity    = bits[0]; 
	temperature = bits[2]; 

	uint8_t sum = bits[0] + bits[2];  

	if (bits[4] != sum) return DHTLIB_ERROR_CHECKSUM;
	return DHTLIB_OK;
}
//
// END OF FILE
//
9-Réaliser le cablage suivant http://labalec.fr/erwan/?p=1508
10-Pour que ca fonctionne j'ai eu besoin de télécharger et d'installer tiny8x pcrel patch.zip récupéréhttp://forum.arduino.cc/index.php?topic=116674.0 ou en direct http://forum.arduino.cc/index.php?actio ... tach=22984
(pour l'installation il suiffit de coller le fichier a la fin de l'arborescence (vérifier que la date de modification est bien changer))
Message d'erreur si non installé:

Code : Tout sélectionner

This report would have more information with
  "Show verbose output during compilation"
  enabled in File > Preferences.
Arduino: 1.0.6 (Windows XP), Board: "ATtiny85 (internal 8 MHz clock)"
c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25/crttn85.o:(.init9+0x2): relocation truncated to fit: R_AVR_13_PCREL against symbol `exit' defined in .fini9 section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_exit.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setHumidity(unsigned char*, unsigned char)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:277: relocation truncated to fit: R_AVR_13_PCREL against symbol `__udivmodqi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_udivmodqi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:278: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulhi3' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_mulhi3.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setTemperature(unsigned char*, float)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:256: relocation truncated to fit: R_AVR_13_PCREL against symbol `__fixsfsi' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(fixsfsi.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:257: relocation truncated to fit: R_AVR_13_PCREL against symbol `__divmodhi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_divmodhi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `round' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(round.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: additional relocation overflows omitted from the output
11-Puis comme d’écrit:
-télécharger le fichier de paramétrage de l'attiny http://labalec.fr/erwan/wp-content/uplo ... attiny.zip et l'installer dans Documents\Arduino\hardware (soit au final Documents\Arduino\hardware\attiny\variants...)

-et la mettre dans Documents\Arduino\ (il y aura donc dans arduino 5 dossiers + 4 fichiers)
-Démarrer le soft Arduino
-faire fichier/exemples/arduinoisp
-Ouvrir votre script "rf433_sendOOK_at85_dht11.ino"
- dans outils/programmateur faire « arduino as isp »
- dans outils\type de carte choisir « attiny85 (8mhz) »
-Faire compiler
-Puis outils/graver la séquence d'initialisation
-Apparation d'un pseudo message d'erreur
-Puis téléverser.
-Apparation d'un pseudo message d'erreur
-Fermer
-Réaliser le branchement qui va bien http://labalec.fr/erwan/?p=1534
-enjoy
__________________________________________________________________________
DTH22
1-Copier le script de traveled

Code : Tout sélectionner

/*
 * connectingStuff, Oregon Scientific v2.1 Emitter
 * http://connectingstuff.net/blog/encodage-protocoles-oregon-scientific-sur-arduino/
 *
 * Copyright (C) 2013 olivier.lebrun@gmail.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
*/

#include <avr/sleep.h>
#include <avr/wdt.h>

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

volatile boolean f_wdt = 1;

#include <dht.h>
dht DHT;
#define DHT22_PIN 1

//#include <SoftwareSerial.h>
//#define SERIAL_RX PB3 //pin 2 //INPUT
//#define SERIAL_TX PB4 //pin 3 //OUTPUT
//SoftwareSerial TinySerial(SERIAL_RX, SERIAL_TX); // RX, TX


const byte TX_PIN = 0;

 
const unsigned long TIME = 512;
const unsigned long TWOTIME = TIME*2;
 
#define SEND_HIGH() digitalWrite(TX_PIN, HIGH)
#define SEND_LOW() digitalWrite(TX_PIN, LOW)
 
// Buffer for Oregon message
  byte OregonMessageBuffer[9];
 
/**
 * \brief    Send logical "0" over RF
 * \details  azero bit be represented by an off-to-on transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first
 */
inline void sendZero(void)
{
  SEND_HIGH();
  delayMicroseconds(TIME);
  SEND_LOW();
  delayMicroseconds(TWOTIME);
  SEND_HIGH();
  delayMicroseconds(TIME);
}
 
/**
 * \brief    Send logical "1" over RF
 * \details  a one bit be represented by an on-to-off transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first
 */
inline void sendOne(void)
{
   SEND_LOW();
   delayMicroseconds(TIME);
   SEND_HIGH();
   delayMicroseconds(TWOTIME);
   SEND_LOW();
   delayMicroseconds(TIME);
}
 
/**
* Send a bits quarter (4 bits = MSB from 8 bits value) over RF
*
* @param data Source data to process and sent
*/
 
/**
 * \brief    Send a bits quarter (4 bits = MSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterMSB(const byte data)
{
  (bitRead(data, 4)) ? sendOne() : sendZero();
  (bitRead(data, 5)) ? sendOne() : sendZero();
  (bitRead(data, 6)) ? sendOne() : sendZero();
  (bitRead(data, 7)) ? sendOne() : sendZero();
}
 
/**
 * \brief    Send a bits quarter (4 bits = LSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterLSB(const byte data)
{
  (bitRead(data, 0)) ? sendOne() : sendZero();
  (bitRead(data, 1)) ? sendOne() : sendZero();
  (bitRead(data, 2)) ? sendOne() : sendZero();
  (bitRead(data, 3)) ? sendOne() : sendZero();
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Send a buffer over RF
 * \param    data   Data to send
 * \param    size   size of data to send
 */
void sendData(byte *data, byte size)
{
  for(byte i = 0; i < size; ++i)
  {
    sendQuarterLSB(data[i]);
    sendQuarterMSB(data[i]);
  }
}
 
/**
 * \brief    Send an Oregon message
 * \param    data   The Oregon message
 */
void sendOregon(byte *data, byte size)
{
    sendPreamble();
    //sendSync();
    sendData(data, size);
    sendPostamble();
}
 
/**
 * \brief    Send preamble
 * \details  The preamble consists of 16 "1" bits
 */
inline void sendPreamble(void)
{
  byte PREAMBLE[]={0xFF,0xFF};
  sendData(PREAMBLE, 2);
}
 
/**
 * \brief    Send postamble
 * \details  The postamble consists of 8 "0" bits
 */
inline void sendPostamble(void)
{
  byte POSTAMBLE[]={0x00};
  sendData(POSTAMBLE, 1); 
}
 
/**
 * \brief    Send sync nibble
 * \details  The sync is 0xA. It is not use in this version since the sync nibble
 * \         is include in the Oregon message to send.
 */
inline void sendSync(void)
{
  sendQuarterLSB(0xA);
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Set the sensor type
 * \param    data       Oregon message
 * \param    type       Sensor type
 */
inline void setType(byte *data, byte* type)
{
  data[0] = type[0];
  data[1] = type[1];
}
 
/**
 * \brief    Set the sensor channel
 * \param    data       Oregon message
 * \param    channel    Sensor channel (0x10, 0x20, 0x30)
 */
inline void setChannel(byte *data, byte channel)
{
    data[2] = channel;
}
 
/**
 * \brief    Set the sensor ID
 * \param    data       Oregon message
 * \param    ID         Sensor unique ID
 */
inline void setId(byte *data, byte ID)
{
  data[3] = ID;
}
 
/**
 * \brief    Set the sensor battery level
 * \param    data       Oregon message
 * \param    level      Battery level (0 = low, 1 = high)
 */
void setBatteryLevel(byte *data, byte level)
{
  if(!level) data[4] = 0x0C;
  else data[4] = 0x00;
}
 
/**
 * \brief    Set the sensor temperature
 * \param    data       Oregon message
 * \param    temp       the temperature
 */
void setTemperature(byte *data, float temp)
{
  // Set temperature sign
  if(temp < 0)
  {
    data[6] = 0x08;
    temp *= -1; 
  }
  else
  {
    data[6] = 0x00;
  }
 
  // Determine decimal and float part
  int tempInt = (int)temp;
  int td = (int)(tempInt / 10);
  int tf = (int)round((float)((float)tempInt/10 - (float)td) * 10);
 
  int tempFloat =  (int)round((float)(temp - (float)tempInt) * 10);
 
  // Set temperature decimal part
  data[5] = (td << 4);
  data[5] |= tf;
 
  // Set temperature float part
  data[4] |= (tempFloat << 4);
}
 
/**
 * \brief    Set the sensor humidity
 * \param    data       Oregon message
 * \param    hum        the humidity
 */
void setHumidity(byte* data, byte hum)
{
    data[7] = (hum/10);
    data[6] |= (hum - data[7]*10) << 4;
}
 
/**
 * \brief    Sum data for checksum
 * \param    count      number of bit to sum
 * \param    data       Oregon message
 */
int Sum(byte count, const byte* data)
{
  int s = 0;
 
  for(byte i = 0; i<count;i++)
  {
    s += (data[i]&0xF0) >> 4;
    s += (data[i]&0xF);
  }
 
  if(int(count) != count)
    s += (data[count]&0xF0) >> 4;
 
  return s;
}
 
/**
 * \brief    Calculate checksum
 * \param    data       Oregon message
 */
void calculateAndSetChecksum(byte* data)
{

    data[8] = ((Sum(8, data) - 0xa) & 0xFF);

}
 

 
/******************************************************************/
 
void setup()
{
  setup_watchdog(9);
  //pinMode(PB3, OUTPUT);
  //digitalWrite(PB3,HIGH);delay(500);
  //digitalWrite(PB3,LOW);delay(500);
  //digitalWrite(PB3,HIGH);
  //pinMode(TX_PIN, OUTPUT);
 
 
//  pinMode(PB4, OUTPUT); //tx
//  TinySerial.begin(9600);
//  TinySerial.println("\n[Oregon V2.1 encoder]");
 
  SEND_LOW();
   
  // Create the Oregon message for a temperature/humidity sensor (THGR2228N)
  byte ID[] = {0x1A,0x2D};
 
  setType(OregonMessageBuffer, ID);
  setChannel(OregonMessageBuffer, 0x20);
  setId(OregonMessageBuffer, 0xBB);
}


// set system into the sleep state
// system wakes up when wtchdog is timed out
void system_sleep() {
  cbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter OFF

  set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
  sleep_enable();

  sleep_mode();                        // System sleeps here

  sleep_disable();                     // System continues execution here when watchdog timed out
  sbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter ON
}

// 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(int ii) {

  byte bb;
  int ww;
  if (ii > 9 ) ii=9;
  bb=ii & 7;
  if (ii > 7) bb|= (1<<5);
  bb|= (1<<WDCE);
  ww=bb;

  MCUSR &= ~(1<<WDRF);
  // start timed sequence
  WDTCR |= (1<<WDCE) | (1<<WDE);
  // set new watchdog timeout value
  WDTCR = bb;
  WDTCR |= _BV(WDIE);
}
 
// Watchdog Interrupt Service / is executed when watchdog timed out
ISR(WDT_vect) {
  f_wdt=1;  // set global flag
}

 
void loop()
{
  int chk = DHT.read22(DHT22_PIN);

  setBatteryLevel(OregonMessageBuffer, 1); // 0 : low, 1 : high
  setTemperature(OregonMessageBuffer, DHT.temperature);
 
  setHumidity(OregonMessageBuffer, DHT.humidity);
 
  // Calculate the checksum
  calculateAndSetChecksum(OregonMessageBuffer);
 
  // Show the Oregon Message
  for (byte i = 0; i < sizeof(OregonMessageBuffer); ++i)   {     
  }
   // Send the Message over RF
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
  // Send a "pause"
  SEND_LOW();
  delayMicroseconds(TWOTIME*8);
  // Send a copie of the first message. The v2.1 protocol send the
  // message two time
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
  SEND_LOW();
  //
  //9 secs * 6 = 54 secs
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  //
  //delay(30000);
 
}
2-Lancer arduino et coller le script fraichement copier.
3-faire un fichier enregistrer sous mes documents/arduino/rf433_sendOOK_at85_dht22.ino
4-Dans mes documents/arduino/libraries cree un dossier dht
5-Dans dht cree 2 fichier txt dhth.txt et un dhtcpp.txt
6-Dans dhth.txt coller le script du meme nom trouvé ici http://playground.arduino.cc/Main/DHTLib ou ci dessous puis enregistrer et le renommer en dht.h

Code : Tout sélectionner

//
//    FILE: dht.h
//  AUTHOR: Rob Tillaart
// VERSION: 0.1.14
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino
//     URL: http://arduino.cc/playground/Main/DHTLib
//
// HISTORY:
// see dht.cpp file
//

#ifndef dht_h
#define dht_h

#if ARDUINO < 100
#include <WProgram.h>
#else
#include <Arduino.h>
#endif

#define DHT_LIB_VERSION "0.1.14"

#define DHTLIB_OK                0
#define DHTLIB_ERROR_CHECKSUM   -1
#define DHTLIB_ERROR_TIMEOUT    -2
#define DHTLIB_INVALID_VALUE    -999

#define DHTLIB_DHT11_WAKEUP     18
#define DHTLIB_DHT_WAKEUP       1

// max timeout is 100 usec.
// For a 16 Mhz proc 100 usec is 1600 clock cycles
// loops using DHTLIB_TIMEOUT use at least 4 clock cycli
// so 100 us takes max 400 loops
// so by dividing F_CPU by 40000 we "fail" as fast as possible
#define DHTLIB_TIMEOUT (F_CPU/40000)

class dht
{
public:
    // return values:
    // DHTLIB_OK
    // DHTLIB_ERROR_CHECKSUM
    // DHTLIB_ERROR_TIMEOUT
    int read11(uint8_t pin);
    int read(uint8_t pin);

    inline int read21(uint8_t pin) { return read(pin); };
    inline int read22(uint8_t pin) { return read(pin); };
    inline int read33(uint8_t pin) { return read(pin); };
    inline int read44(uint8_t pin) { return read(pin); };

    double humidity;
    double temperature;

private:
    uint8_t bits[5];  // buffer to receive data
    int _readSensor(uint8_t pin, uint8_t wakeupDelay);
};
#endif
//
// END OF FILE
//
8-Meme chose pour le cpp

Code : Tout sélectionner

//
//    FILE: dht.cpp
//  AUTHOR: Rob Tillaart
// VERSION: 0.1.14
// PURPOSE: DHT Temperature & Humidity Sensor library for Arduino
//     URL: http://arduino.cc/playground/Main/DHTLib
//
// HISTORY:
// 0.1.14 replace digital read with faster (~3x) code => more robust low MHz machines.
// 0.1.13 fix negative temperature
// 0.1.12 support DHT33 and DHT44 initial version
// 0.1.11 renamed DHTLIB_TIMEOUT
// 0.1.10 optimized faster WAKEUP + TIMEOUT
// 0.1.09 optimize size: timeout check + use of mask
// 0.1.08 added formula for timeout based upon clockspeed
// 0.1.07 added support for DHT21
// 0.1.06 minimize footprint (2012-12-27)
// 0.1.05 fixed negative temperature bug (thanks to Roseman)
// 0.1.04 improved readability of code using DHTLIB_OK in code
// 0.1.03 added error values for temp and humidity when read failed
// 0.1.02 added error codes
// 0.1.01 added support for Arduino 1.0, fixed typos (31/12/2011)
// 0.1.00 by Rob Tillaart (01/04/2011)
//
// inspired by DHT11 library
//
// Released to the public domain
//

#include "dht.h"

/////////////////////////////////////////////////////
//
// PUBLIC
//

// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_TIMEOUT
int dht::read11(uint8_t pin)
{
    // READ VALUES
    int rv = _readSensor(pin, DHTLIB_DHT11_WAKEUP);
    if (rv != DHTLIB_OK)
    {
        humidity    = DHTLIB_INVALID_VALUE; // invalid value, or is NaN prefered?
        temperature = DHTLIB_INVALID_VALUE; // invalid value
        return rv;
    }

    // CONVERT AND STORE
    humidity    = bits[0];  // bits[1] == 0;
    temperature = bits[2];  // bits[3] == 0;

    // TEST CHECKSUM
    // bits[1] && bits[3] both 0
    uint8_t sum = bits[0] + bits[2];
    if (bits[4] != sum) return DHTLIB_ERROR_CHECKSUM;

    return DHTLIB_OK;
}


// return values:
// DHTLIB_OK
// DHTLIB_ERROR_CHECKSUM
// DHTLIB_ERROR_TIMEOUT
int dht::read(uint8_t pin)
{
    // READ VALUES
    int rv = _readSensor(pin, DHTLIB_DHT_WAKEUP);
    if (rv != DHTLIB_OK)
    {
        humidity    = DHTLIB_INVALID_VALUE;  // invalid value, or is NaN prefered?
        temperature = DHTLIB_INVALID_VALUE;  // invalid value
        return rv; // propagate error value
    }

    // CONVERT AND STORE
    humidity = word(bits[0], bits[1]) * 0.1;
    temperature = word(bits[2] & 0x7F, bits[3]) * 0.1;
    if (bits[2] & 0x80)  // negative temperature
    {
        temperature = -temperature;
    }

    // TEST CHECKSUM
    uint8_t sum = bits[0] + bits[1] + bits[2] + bits[3];
    if (bits[4] != sum)
    {
        return DHTLIB_ERROR_CHECKSUM;
    }
    return DHTLIB_OK;
}

/////////////////////////////////////////////////////
//
// PRIVATE
//

// return values:
// DHTLIB_OK
// DHTLIB_ERROR_TIMEOUT
int dht::_readSensor(uint8_t pin, uint8_t wakeupDelay)
{
    // INIT BUFFERVAR TO RECEIVE DATA
    uint8_t mask = 128;
    uint8_t idx = 0;

    // replace digitalRead() with Direct Port Reads.
    // reduces footprint ~100 bytes => portability issue?
    // direct port read is about 3x faster
	uint8_t bit = digitalPinToBitMask(pin);
	uint8_t port = digitalPinToPort(pin);
    volatile uint8_t *PIR = portInputRegister(port);

    // EMPTY BUFFER
    for (uint8_t i = 0; i < 5; i++) bits[i] = 0;

    // REQUEST SAMPLE
    pinMode(pin, OUTPUT);
    digitalWrite(pin, LOW); // T-be 
    delay(wakeupDelay);
    digitalWrite(pin, HIGH);   // T-go
    delayMicroseconds(40);
    pinMode(pin, INPUT);

    // GET ACKNOWLEDGE or TIMEOUT
    uint16_t loopCntLOW = DHTLIB_TIMEOUT;
    while ((*PIR & bit) == LOW )  // T-rel
    {
        if (--loopCntLOW == 0) return DHTLIB_ERROR_TIMEOUT;
    }

    uint16_t loopCntHIGH = DHTLIB_TIMEOUT;
    while ((*PIR & bit) != LOW )  // T-reh
    {
        if (--loopCntHIGH == 0) return DHTLIB_ERROR_TIMEOUT;
    }

    // READ THE OUTPUT - 40 BITS => 5 BYTES
    for (uint8_t i = 40; i != 0; i--)
    {
        loopCntLOW = DHTLIB_TIMEOUT;
        while ((*PIR & bit) == LOW )
        {
            if (--loopCntLOW == 0) return DHTLIB_ERROR_TIMEOUT;
        }

        uint32_t t = micros();

        loopCntHIGH = DHTLIB_TIMEOUT;
        while ((*PIR & bit) != LOW )
        {
            if (--loopCntHIGH == 0) return DHTLIB_ERROR_TIMEOUT;
        }

        if ((micros() - t) > 40)
        { 
            bits[idx] |= mask;
        }
        mask >>= 1;
        if (mask == 0)   // next byte?
        {
            mask = 128;
            idx++;
        }
    }
    pinMode(pin, OUTPUT);
    digitalWrite(pin, HIGH);

    return DHTLIB_OK;
}
//
// END OF FILE
//
9-Réaliser le cablage suivant http://labalec.fr/erwan/?p=1508
10-Pour que ca fonctionne j'ai eu besoin de télécharger et d'installer tiny8x pcrel patch.zip récupéréhttp://forum.arduino.cc/index.php?topic=116674.0 ou en direct http://forum.arduino.cc/index.php?actio ... tach=22984
(pour l'installation il suiffit de coller le fichier a la fin de l'arborescence (vérifier que la date de modification est bien changer))
Message d'erreur si non installé:

Code : Tout sélectionner

This report would have more information with
  "Show verbose output during compilation"
  enabled in File > Preferences.
Arduino: 1.0.6 (Windows XP), Board: "ATtiny85 (internal 8 MHz clock)"
c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25/crttn85.o:(.init9+0x2): relocation truncated to fit: R_AVR_13_PCREL against symbol `exit' defined in .fini9 section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_exit.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setHumidity(unsigned char*, unsigned char)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:277: relocation truncated to fit: R_AVR_13_PCREL against symbol `__udivmodqi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_udivmodqi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:278: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulhi3' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_mulhi3.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setTemperature(unsigned char*, float)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:256: relocation truncated to fit: R_AVR_13_PCREL against symbol `__fixsfsi' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(fixsfsi.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:257: relocation truncated to fit: R_AVR_13_PCREL against symbol `__divmodhi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_divmodhi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `round' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(round.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: additional relocation overflows omitted from the output
11-Puis comme d’écrit:
-télécharger le fichier de paramétrage de l'attiny http://labalec.fr/erwan/wp-content/uplo ... attiny.zip et l'installer dans Documents\Arduino\hardware (soit au final Documents\Arduino\hardware\attiny\variants...)

-et la mettre dans Documents\Arduino\ (il y aura donc dans arduino 5 dossiers + 4 fichiers)
-Démarrer le soft Arduino
-faire fichier/exemples/arduinoisp
-Ouvrir votre script "rf433_sendOOK_at85_dht11.ino"
- dans outils/programmateur faire « arduino as isp »
- dans outils\type de carte choisir « attiny85 (8mhz) »
-Faire compiler
-Puis outils/graver la séquence d'initialisation
-Apparation d'un pseudo message d'erreur
-Puis téléverser.
-Apparation d'un pseudo message d'erreur
-Fermer
-Réaliser le branchement qui va bien http://labalec.fr/erwan/?p=1534
-enjoy
__________________________________________________________________________
DS18B20 en dessous
Modifié en dernier par mulot35 le 12 févr. 2015, 21:12, modifié 14 fois.
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

Disable adblock

This site is supported by ads and donations.
If you see this text you are blocking our ads.
Please consider a Donation to support the site.


mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

Re: [diy] Fabriquer sonde radio Oregon

Message par mulot35 » 04 févr. 2015, 08:50

DS18B20
1-Copier le script http://labalec.fr/erwan/wp-content/uplo ... K_at85.txt (fonctionnel) ou celui si dessous avec un system_sleep multiplé par 6 (54sec) (seras testé semaine 8)

Code : Tout sélectionner

/*
 * connectingStuff, Oregon Scientific v2.1 Emitter
 * http://connectingstuff.net/blog/encodage-protocoles-oregon-scientific-sur-arduino/
 *
 * Copyright (C) 2013 olivier.lebrun@gmail.com
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
*/



#include <avr/sleep.h>
#include <avr/wdt.h>

#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif

volatile boolean f_wdt = 1;


#include <OneWire.h>
#include <SoftwareSerial.h>
#define SERIAL_RX PB3 //2 //INPUT
#define SERIAL_TX PB4 //3 //OUTPUT

#define DS18B20 0x28     // Adresse 1-Wire du DS18B20
#define BROCHE_ONEWIRE 1 // Broche utilisée pour le bus 1-Wire

SoftwareSerial TinySerial(SERIAL_RX, SERIAL_TX); // RX, TX



OneWire ds(BROCHE_ONEWIRE); // Création de l'objet OneWire ds
 
#define THN132N
 
const byte TX_PIN = 0;
 
const unsigned long TIME = 512;
const unsigned long TWOTIME = TIME*2;
 
#define SEND_HIGH() digitalWrite(TX_PIN, HIGH)
#define SEND_LOW() digitalWrite(TX_PIN, LOW)
 
// Buffer for Oregon message
#ifdef THN132N
  byte OregonMessageBuffer[8];
#else
  byte OregonMessageBuffer[9];
#endif
 
/**
 * \brief    Send logical "0" over RF
 * \details  azero bit be represented by an off-to-on transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first 
 */
inline void sendZero(void) 
{
  SEND_HIGH();
  delayMicroseconds(TIME);
  SEND_LOW();
  delayMicroseconds(TWOTIME);
  SEND_HIGH();
  delayMicroseconds(TIME);
}
 
/**
 * \brief    Send logical "1" over RF
 * \details  a one bit be represented by an on-to-off transition
 * \         of the RF signal at the middle of a clock period.
 * \         Remenber, the Oregon v2.1 protocol add an inverted bit first 
 */
inline void sendOne(void) 
{
   SEND_LOW();
   delayMicroseconds(TIME);
   SEND_HIGH();
   delayMicroseconds(TWOTIME);
   SEND_LOW();
   delayMicroseconds(TIME);
}
 
/**
* Send a bits quarter (4 bits = MSB from 8 bits value) over RF
*
* @param data Source data to process and sent
*/
 
/**
 * \brief    Send a bits quarter (4 bits = MSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterMSB(const byte data) 
{
  (bitRead(data, 4)) ? sendOne() : sendZero();
  (bitRead(data, 5)) ? sendOne() : sendZero();
  (bitRead(data, 6)) ? sendOne() : sendZero();
  (bitRead(data, 7)) ? sendOne() : sendZero();
}
 
/**
 * \brief    Send a bits quarter (4 bits = LSB from 8 bits value) over RF
 * \param    data   Data to send
 */
inline void sendQuarterLSB(const byte data) 
{
  (bitRead(data, 0)) ? sendOne() : sendZero();
  (bitRead(data, 1)) ? sendOne() : sendZero();
  (bitRead(data, 2)) ? sendOne() : sendZero();
  (bitRead(data, 3)) ? sendOne() : sendZero();
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Send a buffer over RF
 * \param    data   Data to send
 * \param    size   size of data to send
 */
void sendData(byte *data, byte size)
{
  for(byte i = 0; i < size; ++i)
  {
    sendQuarterLSB(data[i]);
    sendQuarterMSB(data[i]);
  }
}
 
/**
 * \brief    Send an Oregon message
 * \param    data   The Oregon message
 */
void sendOregon(byte *data, byte size)
{
    sendPreamble();
    //sendSync();
    sendData(data, size);
    sendPostamble();
}
 
/**
 * \brief    Send preamble
 * \details  The preamble consists of 16 "1" bits
 */
inline void sendPreamble(void)
{
  byte PREAMBLE[]={0xFF,0xFF};
  sendData(PREAMBLE, 2);
}
 
/**
 * \brief    Send postamble
 * \details  The postamble consists of 8 "0" bits
 */
inline void sendPostamble(void)
{
#ifdef THN132N
  sendQuarterLSB(0x00);
#else
  byte POSTAMBLE[]={0x00};
  sendData(POSTAMBLE, 1);  
#endif
}
 
/**
 * \brief    Send sync nibble
 * \details  The sync is 0xA. It is not use in this version since the sync nibble
 * \         is include in the Oregon message to send.
 */
inline void sendSync(void)
{
  sendQuarterLSB(0xA);
}
 
/******************************************************************/
/******************************************************************/
/******************************************************************/
 
/**
 * \brief    Set the sensor type
 * \param    data       Oregon message
 * \param    type       Sensor type
 */
inline void setType(byte *data, byte* type) 
{
  data[0] = type[0];
  data[1] = type[1];
}
 
/**
 * \brief    Set the sensor channel
 * \param    data       Oregon message
 * \param    channel    Sensor channel (0x10, 0x20, 0x30)
 */
inline void setChannel(byte *data, byte channel) 
{
    data[2] = channel;
}
 
/**
 * \brief    Set the sensor ID
 * \param    data       Oregon message
 * \param    ID         Sensor unique ID
 */
inline void setId(byte *data, byte ID) 
{
  data[3] = ID;
}
 
/**
 * \brief    Set the sensor battery level
 * \param    data       Oregon message
 * \param    level      Battery level (0 = low, 1 = high)
 */
void setBatteryLevel(byte *data, byte level)
{
  if(!level) data[4] = 0x0C;
  else data[4] = 0x00;
}
 
/**
 * \brief    Set the sensor temperature
 * \param    data       Oregon message
 * \param    temp       the temperature
 */
void setTemperature(byte *data, float temp) 
{
  // Set temperature sign
  if(temp < 0)
  {
    data[6] = 0x08;
    temp *= -1;  
  }
  else
  {
    data[6] = 0x00;
  }
 
  // Determine decimal and float part
  int tempInt = (int)temp;
  int td = (int)(tempInt / 10);
  int tf = (int)round((float)((float)tempInt/10 - (float)td) * 10);
 
  int tempFloat =  (int)round((float)(temp - (float)tempInt) * 10);
 
  // Set temperature decimal part
  data[5] = (td << 4);
  data[5] |= tf;
 
  // Set temperature float part
  data[4] |= (tempFloat << 4);
}
 
/**
 * \brief    Set the sensor humidity
 * \param    data       Oregon message
 * \param    hum        the humidity
 */
void setHumidity(byte* data, byte hum)
{
    data[7] = (hum/10);
    data[6] |= (hum - data[7]*10) << 4;
}
 
/**
 * \brief    Sum data for checksum
 * \param    count      number of bit to sum
 * \param    data       Oregon message
 */
int Sum(byte count, const byte* data)
{
  int s = 0;
 
  for(byte i = 0; i<count;i++)
  {
    s += (data[i]&0xF0) >> 4;
    s += (data[i]&0xF);
  }
 
  if(int(count) != count)
    s += (data[count]&0xF0) >> 4;
 
  return s;
}
 
/**
 * \brief    Calculate checksum
 * \param    data       Oregon message
 */
void calculateAndSetChecksum(byte* data)
{
#ifdef THN132N
    int s = ((Sum(6, data) + (data[6]&0xF) - 0xa) & 0xff);
 
    data[6] |=  (s&0x0F) << 4;     data[7] =  (s&0xF0) >> 4;
#else
    data[8] = ((Sum(8, data) - 0xa) & 0xFF);
#endif
}
 
/******************************************************************/
/******************************************************************/

// Fonction récupérant la température depuis le DS18B20
// Retourne true si tout va bien, ou false en cas d'erreur
boolean getTemperature(float *temp){
  byte data[9], addr[8];
  // data : Données lues depuis le scratchpad
  // addr : adresse du module 1-Wire détecté
 
  
  if (!ds.search(addr)) { // Recherche un module 1-Wire
    ds.reset_search();    // Réinitialise la recherche de module
    return false;         // Retourne une erreur
  }
   
  if (OneWire::crc8(addr, 7) != addr[7]) // Vérifie que l'adresse a été correctement reçue
    return false;                        // Si le message est corrompu on retourne une erreur

  if (addr[0] != DS18B20) // Vérifie qu'il s'agit bien d'un DS18B20
    return false;         // Si ce n'est pas le cas on retourne une erreur
 
  ds.reset();             // On reset le bus 1-Wire
  ds.select(addr);        // On sélectionne le DS18B20
   
  ds.write(0x44, 1);      // On lance une prise de mesure de température
  delay(1000);             // Et on attend la fin de la mesure
   
  ds.reset();             // On reset le bus 1-Wire
  ds.select(addr);        // On sélectionne le DS18B20
  ds.write(0xBE);         // On envoie une demande de lecture du scratchpad
 
  for (byte i = 0; i < 9; i++) // On lit le scratchpad
    data[i] = ds.read();       // Et on stock les octets reçus
   
  // Calcul de la température en degré Celsius
  *temp = ((data[1] << 8) | data[0]) * 0.0625; 
   
  // Pas d'erreur
  return true;
}
 
 
/******************************************************************/
 
void setup()
{
  setup_watchdog(9);
  //pinMode(PB3, OUTPUT);
  //digitalWrite(PB3,HIGH);delay(500);
  //digitalWrite(PB3,LOW);delay(500);
  //digitalWrite(PB3,HIGH);
  pinMode(TX_PIN, OUTPUT);
  
 
 pinMode(PB4, OUTPUT); //tx
  TinySerial.begin(9600);
  TinySerial.println("\n[Oregon V2.1 encoder]");
 
  SEND_LOW();  
 
#ifdef THN132N  
  // Create the Oregon message for a temperature only sensor (TNHN132N)
  byte ID[] = {0xEA,0x4C};
#else
  // Create the Oregon message for a temperature/humidity sensor (THGR2228N)
  byte ID[] = {0x1A,0x2D};
#endif  
 
  setType(OregonMessageBuffer, ID);
  setChannel(OregonMessageBuffer, 0x20);
  setId(OregonMessageBuffer, 0xCC);
}


// set system into the sleep state 
// system wakes up when wtchdog is timed out
void system_sleep() {
  cbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter OFF

  set_sleep_mode(SLEEP_MODE_PWR_DOWN); // sleep mode is set here
  sleep_enable();

  sleep_mode();                        // System sleeps here

  sleep_disable();                     // System continues execution here when watchdog timed out 
  sbi(ADCSRA,ADEN);                    // switch Analog to Digitalconverter ON
}

// 0=16ms, 1=32ms,2=64ms,3=128ms,4=250ms,5=500ms
// 6=1 sec,7=2 sec, 8=4 sec, 9= 8sec
void setup_watchdog(int ii) {

  byte bb;
  int ww;
  if (ii > 9 ) ii=9;
  bb=ii & 7;
  if (ii > 7) bb|= (1<<5);
  bb|= (1<<WDCE);
  ww=bb;

  MCUSR &= ~(1<<WDRF);
  // start timed sequence
  WDTCR |= (1<<WDCE) | (1<<WDE);
  // set new watchdog timeout value
  WDTCR = bb;
  WDTCR |= _BV(WDIE);
}
  
// Watchdog Interrupt Service / is executed when watchdog timed out
ISR(WDT_vect) {
  f_wdt=1;  // set global flag
}

 
void loop()
{
  
  // Get Temperature, humidity and battery level from sensors
  float temp;
   if (getTemperature(&temp)) {
  TinySerial.print("Temperature : ");TinySerial.print(temp);TinySerial.write(176); // caractère °
  TinySerial.write('C'); TinySerial.println();
  // (ie: 1wire DS18B20 for température, ...)
  setBatteryLevel(OregonMessageBuffer, 0); // 0 : low, 1 : high
  setTemperature(OregonMessageBuffer, temp);
 
#ifndef THN132N
  // Set Humidity
  setHumidity(OregonMessageBuffer, 52);
#endif  
 
  // Calculate the checksum
  calculateAndSetChecksum(OregonMessageBuffer);
 
  // Show the Oregon Message
  for (byte i = 0; i < sizeof(OregonMessageBuffer); ++i)   {     
    //TinySerial.print(OregonMessageBuffer[i] >> 4, HEX);
    //TinySerial.print(OregonMessageBuffer[i] & 0x0F, HEX);
  }
 
  // Send the Message over RF
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
  // Send a "pause"
  SEND_LOW();
  delayMicroseconds(TWOTIME*8);
  // Send a copie of the first message. The v2.1 protocol send the
  // message two time 
  sendOregon(OregonMessageBuffer, sizeof(OregonMessageBuffer));
 
  // Wait for 30 seconds before send a new message 
  SEND_LOW();
  }
  else {
    TinySerial.println("getTemperature failed");
  }
  //
  //9 secs * 6 = 54 secs
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
  system_sleep();
   //
  //delay(30000);
  
}
2-Lancer arduino et coller le script fraichement copier.
3-Faire un fichier/enregistrer sous/mes documents/arduino/ puis enregistrer en temps que rf433_sendOOK_at85_ds18b20.ino
4-RDV ici https://www.pjrc.com/teensy/td_libs_OneWire.html pour télécharger le fichier OneWire.zip et extraire le dossier OneWire dans mes documents/librairies/
Le zip contient entre autres:
OneWire.h

Code : Tout sélectionner

#ifndef OneWire_h
#define OneWire_h

#include <inttypes.h>

#if ARDUINO >= 100
#include "Arduino.h"       // for delayMicroseconds, digitalPinToBitMask, etc
#else
#include "WProgram.h"      // for delayMicroseconds
#include "pins_arduino.h"  // for digitalPinToBitMask, etc
#endif

// You can exclude certain features from OneWire.  In theory, this
// might save some space.  In practice, the compiler automatically
// removes unused code (technically, the linker, using -fdata-sections
// and -ffunction-sections when compiling, and Wl,--gc-sections
// when linking), so most of these will not result in any code size
// reduction.  Well, unless you try to use the missing features
// and redesign your program to not need them!  ONEWIRE_CRC8_TABLE
// is the exception, because it selects a fast but large algorithm
// or a small but slow algorithm.

// you can exclude onewire_search by defining that to 0
#ifndef ONEWIRE_SEARCH
#define ONEWIRE_SEARCH 1
#endif

// You can exclude CRC checks altogether by defining this to 0
#ifndef ONEWIRE_CRC
#define ONEWIRE_CRC 1
#endif

// Select the table-lookup method of computing the 8-bit CRC
// by setting this to 1.  The lookup table enlarges code size by
// about 250 bytes.  It does NOT consume RAM (but did in very
// old versions of OneWire).  If you disable this, a slower
// but very compact algorithm is used.
#ifndef ONEWIRE_CRC8_TABLE
#define ONEWIRE_CRC8_TABLE 1
#endif

// You can allow 16-bit CRC checks by defining this to 1
// (Note that ONEWIRE_CRC must also be 1.)
#ifndef ONEWIRE_CRC16
#define ONEWIRE_CRC16 1
#endif

#define FALSE 0
#define TRUE  1

// Platform specific I/O definitions

#if defined(__AVR__)
#define PIN_TO_BASEREG(pin)             (portInputRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin)             (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM asm("r30")
#define DIRECT_READ(base, mask)         (((*(base)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask)   ((*((base)+1)) &= ~(mask))
#define DIRECT_MODE_OUTPUT(base, mask)  ((*((base)+1)) |= (mask))
#define DIRECT_WRITE_LOW(base, mask)    ((*((base)+2)) &= ~(mask))
#define DIRECT_WRITE_HIGH(base, mask)   ((*((base)+2)) |= (mask))

#elif defined(__MK20DX128__)
#define PIN_TO_BASEREG(pin)             (portOutputRegister(pin))
#define PIN_TO_BITMASK(pin)             (1)
#define IO_REG_TYPE uint8_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask)         (*((base)+512))
#define DIRECT_MODE_INPUT(base, mask)   (*((base)+640) = 0)
#define DIRECT_MODE_OUTPUT(base, mask)  (*((base)+640) = 1)
#define DIRECT_WRITE_LOW(base, mask)    (*((base)+256) = 1)
#define DIRECT_WRITE_HIGH(base, mask)   (*((base)+128) = 1)

#elif defined(__SAM3X8E__)
// Arduino 1.5.1 may have a bug in delayMicroseconds() on Arduino Due.
// http://arduino.cc/forum/index.php/topic,141030.msg1076268.html#msg1076268
// If you have trouble with OneWire on Arduino Due, please check the
// status of delayMicroseconds() before reporting a bug in OneWire!
#define PIN_TO_BASEREG(pin)             (&(digitalPinToPort(pin)->PIO_PER))
#define PIN_TO_BITMASK(pin)             (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask)         (((*((base)+15)) & (mask)) ? 1 : 0)
#define DIRECT_MODE_INPUT(base, mask)   ((*((base)+5)) = (mask))
#define DIRECT_MODE_OUTPUT(base, mask)  ((*((base)+4)) = (mask))
#define DIRECT_WRITE_LOW(base, mask)    ((*((base)+13)) = (mask))
#define DIRECT_WRITE_HIGH(base, mask)   ((*((base)+12)) = (mask))
#ifndef PROGMEM
#define PROGMEM
#endif
#ifndef pgm_read_byte
#define pgm_read_byte(addr) (*(const uint8_t *)(addr))
#endif

#elif defined(__PIC32MX__)
#define PIN_TO_BASEREG(pin)             (portModeRegister(digitalPinToPort(pin)))
#define PIN_TO_BITMASK(pin)             (digitalPinToBitMask(pin))
#define IO_REG_TYPE uint32_t
#define IO_REG_ASM
#define DIRECT_READ(base, mask)         (((*(base+4)) & (mask)) ? 1 : 0)  //PORTX + 0x10
#define DIRECT_MODE_INPUT(base, mask)   ((*(base+2)) = (mask))            //TRISXSET + 0x08
#define DIRECT_MODE_OUTPUT(base, mask)  ((*(base+1)) = (mask))            //TRISXCLR + 0x04
#define DIRECT_WRITE_LOW(base, mask)    ((*(base+8+1)) = (mask))          //LATXCLR  + 0x24
#define DIRECT_WRITE_HIGH(base, mask)   ((*(base+8+2)) = (mask))          //LATXSET + 0x28

#else
#error "Please define I/O register types here"
#endif


class OneWire
{
  private:
    IO_REG_TYPE bitmask;
    volatile IO_REG_TYPE *baseReg;

#if ONEWIRE_SEARCH
    // global search state
    unsigned char ROM_NO[8];
    uint8_t LastDiscrepancy;
    uint8_t LastFamilyDiscrepancy;
    uint8_t LastDeviceFlag;
#endif

  public:
    OneWire( uint8_t pin);

    // Perform a 1-Wire reset cycle. Returns 1 if a device responds
    // with a presence pulse.  Returns 0 if there is no device or the
    // bus is shorted or otherwise held low for more than 250uS
    uint8_t reset(void);

    // Issue a 1-Wire rom select command, you do the reset first.
    void select(const uint8_t rom[8]);

    // Issue a 1-Wire rom skip command, to address all on bus.
    void skip(void);

    // Write a byte. If 'power' is one then the wire is held high at
    // the end for parasitically powered devices. You are responsible
    // for eventually depowering it by calling depower() or doing
    // another read or write.
    void write(uint8_t v, uint8_t power = 0);

    void write_bytes(const uint8_t *buf, uint16_t count, bool power = 0);

    // Read a byte.
    uint8_t read(void);

    void read_bytes(uint8_t *buf, uint16_t count);

    // Write a bit. The bus is always left powered at the end, see
    // note in write() about that.
    void write_bit(uint8_t v);

    // Read a bit.
    uint8_t read_bit(void);

    // Stop forcing power onto the bus. You only need to do this if
    // you used the 'power' flag to write() or used a write_bit() call
    // and aren't about to do another read or write. You would rather
    // not leave this powered if you don't have to, just in case
    // someone shorts your bus.
    void depower(void);

#if ONEWIRE_SEARCH
    // Clear the search state so that if will start from the beginning again.
    void reset_search();

    // Setup the search to find the device type 'family_code' on the next call
    // to search(*newAddr) if it is present.
    void target_search(uint8_t family_code);

    // Look for the next device. Returns 1 if a new address has been
    // returned. A zero might mean that the bus is shorted, there are
    // no devices, or you have already retrieved all of them.  It
    // might be a good idea to check the CRC to make sure you didn't
    // get garbage.  The order is deterministic. You will always get
    // the same devices in the same order.
    uint8_t search(uint8_t *newAddr);
#endif

#if ONEWIRE_CRC
    // Compute a Dallas Semiconductor 8 bit CRC, these are used in the
    // ROM and scratchpad registers.
    static uint8_t crc8(const uint8_t *addr, uint8_t len);

#if ONEWIRE_CRC16
    // Compute the 1-Wire CRC16 and compare it against the received CRC.
    // Example usage (reading a DS2408):
    //    // Put everything in a buffer so we can compute the CRC easily.
    //    uint8_t buf[13];
    //    buf[0] = 0xF0;    // Read PIO Registers
    //    buf[1] = 0x88;    // LSB address
    //    buf[2] = 0x00;    // MSB address
    //    WriteBytes(net, buf, 3);    // Write 3 cmd bytes
    //    ReadBytes(net, buf+3, 10);  // Read 6 data bytes, 2 0xFF, 2 CRC16
    //    if (!CheckCRC16(buf, 11, &buf[11])) {
    //        // Handle error.
    //    }     
    //          
    // @param input - Array of bytes to checksum.
    // @param len - How many bytes to use.
    // @param inverted_crc - The two CRC16 bytes in the received data.
    //                       This should just point into the received data,
    //                       *not* at a 16-bit integer.
    // @param crc - The crc starting value (optional)
    // @return True, iff the CRC matches.
    static bool check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc = 0);

    // Compute a Dallas Semiconductor 16 bit CRC.  This is required to check
    // the integrity of data received from many 1-Wire devices.  Note that the
    // CRC computed here is *not* what you'll get from the 1-Wire network,
    // for two reasons:
    //   1) The CRC is transmitted bitwise inverted.
    //   2) Depending on the endian-ness of your processor, the binary
    //      representation of the two-byte return value may have a different
    //      byte order than the two bytes you get from 1-Wire.
    // @param input - Array of bytes to checksum.
    // @param len - How many bytes to use.
    // @param crc - The crc starting value (optional)
    // @return The CRC16, as defined by Dallas Semiconductor.
    static uint16_t crc16(const uint8_t* input, uint16_t len, uint16_t crc = 0);
#endif
#endif
};

#endif
et
OneWire.cpp

Code : Tout sélectionner

/*
Copyright (c) 2007, Jim Studt  (original old version - many contributors since)

The latest version of this library may be found at:
  http://www.pjrc.com/teensy/td_libs_OneWire.html

OneWire has been maintained by Paul Stoffregen (paul@pjrc.com) since
January 2010.  At the time, it was in need of many bug fixes, but had
been abandoned the original author (Jim Studt).  None of the known
contributors were interested in maintaining OneWire.  Paul typically
works on OneWire every 6 to 12 months.  Patches usually wait that
long.  If anyone is interested in more actively maintaining OneWire,
please contact Paul.

Version 2.2:
  Teensy 3.0 compatibility, Paul Stoffregen, paul@pjrc.com
  Arduino Due compatibility, http://arduino.cc/forum/index.php?topic=141030
  Fix DS18B20 example negative temperature
  Fix DS18B20 example's low res modes, Ken Butcher
  Improve reset timing, Mark Tillotson
  Add const qualifiers, Bertrik Sikken
  Add initial value input to crc16, Bertrik Sikken
  Add target_search() function, Scott Roberts

Version 2.1:
  Arduino 1.0 compatibility, Paul Stoffregen
  Improve temperature example, Paul Stoffregen
  DS250x_PROM example, Guillermo Lovato
  PIC32 (chipKit) compatibility, Jason Dangel, dangel.jason AT gmail.com
  Improvements from Glenn Trewitt:
  - crc16() now works
  - check_crc16() does all of calculation/checking work.
  - Added read_bytes() and write_bytes(), to reduce tedious loops.
  - Added ds2408 example.
  Delete very old, out-of-date readme file (info is here)

Version 2.0: Modifications by Paul Stoffregen, January 2010:
http://www.pjrc.com/teensy/td_libs_OneWire.html
  Search fix from Robin James
    http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27
  Use direct optimized I/O in all cases
  Disable interrupts during timing critical sections
    (this solves many random communication errors)
  Disable interrupts during read-modify-write I/O
  Reduce RAM consumption by eliminating unnecessary
    variables and trimming many to 8 bits
  Optimize both crc8 - table version moved to flash

Modified to work with larger numbers of devices - avoids loop.
Tested in Arduino 11 alpha with 12 sensors.
26 Sept 2008 -- Robin James
http://www.arduino.cc/cgi-bin/yabb2/YaBB.pl?num=1238032295/27#27

Updated to work with arduino-0008 and to include skip() as of
2007/07/06. --RJL20

Modified to calculate the 8-bit CRC directly, avoiding the need for
the 256-byte lookup table to be loaded in RAM.  Tested in arduino-0010
-- Tom Pollard, Jan 23, 2008

Jim Studt's original library was modified by Josh Larios.

Tom Pollard, pollard@alum.mit.edu, contributed around May 20, 2008

Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:

The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Much of the code was inspired by Derek Yerger's code, though I don't
think much of that remains.  In any event that was..
    (copyleft) 2006 by Derek Yerger - Free to distribute freely.

The CRC code was excerpted and inspired by the Dallas Semiconductor
sample code bearing this copyright.
//---------------------------------------------------------------------------
// Copyright (C) 2000 Dallas Semiconductor Corporation, All Rights Reserved.
//
// Permission is hereby granted, free of charge, to any person obtaining a
// copy of this software and associated documentation files (the "Software"),
// to deal in the Software without restriction, including without limitation
// the rights to use, copy, modify, merge, publish, distribute, sublicense,
// and/or sell copies of the Software, and to permit persons to whom the
// Software is furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included
// in all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
// MERCHANTABILITY,  FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
// IN NO EVENT SHALL DALLAS SEMICONDUCTOR BE LIABLE FOR ANY CLAIM, DAMAGES
// OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
// ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
// OTHER DEALINGS IN THE SOFTWARE.
//
// Except as contained in this notice, the name of Dallas Semiconductor
// shall not be used except as stated in the Dallas Semiconductor
// Branding Policy.
//--------------------------------------------------------------------------
*/

#include "OneWire.h"


OneWire::OneWire(uint8_t pin)
{
	pinMode(pin, INPUT);
	bitmask = PIN_TO_BITMASK(pin);
	baseReg = PIN_TO_BASEREG(pin);
#if ONEWIRE_SEARCH
	reset_search();
#endif
}


// Perform the onewire reset function.  We will wait up to 250uS for
// the bus to come high, if it doesn't then it is broken or shorted
// and we return a 0;
//
// Returns 1 if a device asserted a presence pulse, 0 otherwise.
//
uint8_t OneWire::reset(void)
{
	IO_REG_TYPE mask = bitmask;
	volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
	uint8_t r;
	uint8_t retries = 125;

	noInterrupts();
	DIRECT_MODE_INPUT(reg, mask);
	interrupts();
	// wait until the wire is high... just in case
	do {
		if (--retries == 0) return 0;
		delayMicroseconds(2);
	} while ( !DIRECT_READ(reg, mask));

	noInterrupts();
	DIRECT_WRITE_LOW(reg, mask);
	DIRECT_MODE_OUTPUT(reg, mask);	// drive output low
	interrupts();
	delayMicroseconds(480);
	noInterrupts();
	DIRECT_MODE_INPUT(reg, mask);	// allow it to float
	delayMicroseconds(70);
	r = !DIRECT_READ(reg, mask);
	interrupts();
	delayMicroseconds(410);
	return r;
}

//
// Write a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
void OneWire::write_bit(uint8_t v)
{
	IO_REG_TYPE mask=bitmask;
	volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;

	if (v & 1) {
		noInterrupts();
		DIRECT_WRITE_LOW(reg, mask);
		DIRECT_MODE_OUTPUT(reg, mask);	// drive output low
		delayMicroseconds(10);
		DIRECT_WRITE_HIGH(reg, mask);	// drive output high
		interrupts();
		delayMicroseconds(55);
	} else {
		noInterrupts();
		DIRECT_WRITE_LOW(reg, mask);
		DIRECT_MODE_OUTPUT(reg, mask);	// drive output low
		delayMicroseconds(65);
		DIRECT_WRITE_HIGH(reg, mask);	// drive output high
		interrupts();
		delayMicroseconds(5);
	}
}

//
// Read a bit. Port and bit is used to cut lookup time and provide
// more certain timing.
//
uint8_t OneWire::read_bit(void)
{
	IO_REG_TYPE mask=bitmask;
	volatile IO_REG_TYPE *reg IO_REG_ASM = baseReg;
	uint8_t r;

	noInterrupts();
	DIRECT_MODE_OUTPUT(reg, mask);
	DIRECT_WRITE_LOW(reg, mask);
	delayMicroseconds(3);
	DIRECT_MODE_INPUT(reg, mask);	// let pin float, pull up will raise
	delayMicroseconds(10);
	r = DIRECT_READ(reg, mask);
	interrupts();
	delayMicroseconds(53);
	return r;
}

//
// Write a byte. The writing code uses the active drivers to raise the
// pin high, if you need power after the write (e.g. DS18S20 in
// parasite power mode) then set 'power' to 1, otherwise the pin will
// go tri-state at the end of the write to avoid heating in a short or
// other mishap.
//
void OneWire::write(uint8_t v, uint8_t power /* = 0 */) {
    uint8_t bitMask;

    for (bitMask = 0x01; bitMask; bitMask <<= 1) {
	OneWire::write_bit( (bitMask & v)?1:0);
    }
    if ( !power) {
	noInterrupts();
	DIRECT_MODE_INPUT(baseReg, bitmask);
	DIRECT_WRITE_LOW(baseReg, bitmask);
	interrupts();
    }
}

void OneWire::write_bytes(const uint8_t *buf, uint16_t count, bool power /* = 0 */) {
  for (uint16_t i = 0 ; i < count ; i++)
    write(buf[i]);
  if (!power) {
    noInterrupts();
    DIRECT_MODE_INPUT(baseReg, bitmask);
    DIRECT_WRITE_LOW(baseReg, bitmask);
    interrupts();
  }
}

//
// Read a byte
//
uint8_t OneWire::read() {
    uint8_t bitMask;
    uint8_t r = 0;

    for (bitMask = 0x01; bitMask; bitMask <<= 1) {
	if ( OneWire::read_bit()) r |= bitMask;
    }
    return r;
}

void OneWire::read_bytes(uint8_t *buf, uint16_t count) {
  for (uint16_t i = 0 ; i < count ; i++)
    buf[i] = read();
}

//
// Do a ROM select
//
void OneWire::select(const uint8_t rom[8])
{
    uint8_t i;

    write(0x55);           // Choose ROM

    for (i = 0; i < 8; i++) write(rom[i]);
}

//
// Do a ROM skip
//
void OneWire::skip()
{
    write(0xCC);           // Skip ROM
}

void OneWire::depower()
{
	noInterrupts();
	DIRECT_MODE_INPUT(baseReg, bitmask);
	interrupts();
}

#if ONEWIRE_SEARCH

//
// You need to use this function to start a search again from the beginning.
// You do not need to do it for the first search, though you could.
//
void OneWire::reset_search()
{
  // reset the search state
  LastDiscrepancy = 0;
  LastDeviceFlag = FALSE;
  LastFamilyDiscrepancy = 0;
  for(int i = 7; ; i--) {
    ROM_NO[i] = 0;
    if ( i == 0) break;
  }
}

// Setup the search to find the device type 'family_code' on the next call
// to search(*newAddr) if it is present.
//
void OneWire::target_search(uint8_t family_code)
{
   // set the search state to find SearchFamily type devices
   ROM_NO[0] = family_code;
   for (uint8_t i = 1; i < 8; i++)
      ROM_NO[i] = 0;
   LastDiscrepancy = 64;
   LastFamilyDiscrepancy = 0;
   LastDeviceFlag = FALSE;
}

//
// Perform a search. If this function returns a '1' then it has
// enumerated the next device and you may retrieve the ROM from the
// OneWire::address variable. If there are no devices, no further
// devices, or something horrible happens in the middle of the
// enumeration then a 0 is returned.  If a new device is found then
// its address is copied to newAddr.  Use OneWire::reset_search() to
// start over.
//
// --- Replaced by the one from the Dallas Semiconductor web site ---
//--------------------------------------------------------------------------
// Perform the 1-Wire Search Algorithm on the 1-Wire bus using the existing
// search state.
// Return TRUE  : device found, ROM number in ROM_NO buffer
//        FALSE : device not found, end of search
//
uint8_t OneWire::search(uint8_t *newAddr)
{
   uint8_t id_bit_number;
   uint8_t last_zero, rom_byte_number, search_result;
   uint8_t id_bit, cmp_id_bit;

   unsigned char rom_byte_mask, search_direction;

   // initialize for search
   id_bit_number = 1;
   last_zero = 0;
   rom_byte_number = 0;
   rom_byte_mask = 1;
   search_result = 0;

   // if the last call was not the last one
   if (!LastDeviceFlag)
   {
      // 1-Wire reset
      if (!reset())
      {
         // reset the search
         LastDiscrepancy = 0;
         LastDeviceFlag = FALSE;
         LastFamilyDiscrepancy = 0;
         return FALSE;
      }

      // issue the search command
      write(0xF0);

      // loop to do the search
      do
      {
         // read a bit and its complement
         id_bit = read_bit();
         cmp_id_bit = read_bit();

         // check for no devices on 1-wire
         if ((id_bit == 1) && (cmp_id_bit == 1))
            break;
         else
         {
            // all devices coupled have 0 or 1
            if (id_bit != cmp_id_bit)
               search_direction = id_bit;  // bit write value for search
            else
            {
               // if this discrepancy if before the Last Discrepancy
               // on a previous next then pick the same as last time
               if (id_bit_number < LastDiscrepancy)
                  search_direction = ((ROM_NO[rom_byte_number] & rom_byte_mask) > 0);
               else
                  // if equal to last pick 1, if not then pick 0
                  search_direction = (id_bit_number == LastDiscrepancy);

               // if 0 was picked then record its position in LastZero
               if (search_direction == 0)
               {
                  last_zero = id_bit_number;

                  // check for Last discrepancy in family
                  if (last_zero < 9)
                     LastFamilyDiscrepancy = last_zero;
               }
            }

            // set or clear the bit in the ROM byte rom_byte_number
            // with mask rom_byte_mask
            if (search_direction == 1)
              ROM_NO[rom_byte_number] |= rom_byte_mask;
            else
              ROM_NO[rom_byte_number] &= ~rom_byte_mask;

            // serial number search direction write bit
            write_bit(search_direction);

            // increment the byte counter id_bit_number
            // and shift the mask rom_byte_mask
            id_bit_number++;
            rom_byte_mask <<= 1;

            // if the mask is 0 then go to new SerialNum byte rom_byte_number and reset mask
            if (rom_byte_mask == 0)
            {
                rom_byte_number++;
                rom_byte_mask = 1;
            }
         }
      }
      while(rom_byte_number < 8);  // loop until through all ROM bytes 0-7

      // if the search was successful then
      if (!(id_bit_number < 65))
      {
         // search successful so set LastDiscrepancy,LastDeviceFlag,search_result
         LastDiscrepancy = last_zero;

         // check for last device
         if (LastDiscrepancy == 0)
            LastDeviceFlag = TRUE;

         search_result = TRUE;
      }
   }

   // if no device found then reset counters so next 'search' will be like a first
   if (!search_result || !ROM_NO[0])
   {
      LastDiscrepancy = 0;
      LastDeviceFlag = FALSE;
      LastFamilyDiscrepancy = 0;
      search_result = FALSE;
   }
   for (int i = 0; i < 8; i++) newAddr[i] = ROM_NO[i];
   return search_result;
  }

#endif

#if ONEWIRE_CRC
// The 1-Wire CRC scheme is described in Maxim Application Note 27:
// "Understanding and Using Cyclic Redundancy Checks with Maxim iButton Products"
//

#if ONEWIRE_CRC8_TABLE
// This table comes from Dallas sample code where it is freely reusable,
// though Copyright (C) 2000 Dallas Semiconductor Corporation
static const uint8_t PROGMEM dscrc_table[] = {
      0, 94,188,226, 97, 63,221,131,194,156,126, 32,163,253, 31, 65,
    157,195, 33,127,252,162, 64, 30, 95,  1,227,189, 62, 96,130,220,
     35,125,159,193, 66, 28,254,160,225,191, 93,  3,128,222, 60, 98,
    190,224,  2, 92,223,129, 99, 61,124, 34,192,158, 29, 67,161,255,
     70, 24,250,164, 39,121,155,197,132,218, 56,102,229,187, 89,  7,
    219,133,103, 57,186,228,  6, 88, 25, 71,165,251,120, 38,196,154,
    101, 59,217,135,  4, 90,184,230,167,249, 27, 69,198,152,122, 36,
    248,166, 68, 26,153,199, 37,123, 58,100,134,216, 91,  5,231,185,
    140,210, 48,110,237,179, 81, 15, 78, 16,242,172, 47,113,147,205,
     17, 79,173,243,112, 46,204,146,211,141,111, 49,178,236, 14, 80,
    175,241, 19, 77,206,144,114, 44,109, 51,209,143, 12, 82,176,238,
     50,108,142,208, 83, 13,239,177,240,174, 76, 18,145,207, 45,115,
    202,148,118, 40,171,245, 23, 73,  8, 86,180,234,105, 55,213,139,
     87,  9,235,181, 54,104,138,212,149,203, 41,119,244,170, 72, 22,
    233,183, 85, 11,136,214, 52,106, 43,117,151,201, 74, 20,246,168,
    116, 42,200,150, 21, 75,169,247,182,232, 10, 84,215,137,107, 53};

//
// Compute a Dallas Semiconductor 8 bit CRC. These show up in the ROM
// and the registers.  (note: this might better be done without to
// table, it would probably be smaller and certainly fast enough
// compared to all those delayMicrosecond() calls.  But I got
// confused, so I use this table from the examples.)
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
	uint8_t crc = 0;

	while (len--) {
		crc = pgm_read_byte(dscrc_table + (crc ^ *addr++));
	}
	return crc;
}
#else
//
// Compute a Dallas Semiconductor 8 bit CRC directly.
// this is much slower, but much smaller, than the lookup table.
//
uint8_t OneWire::crc8(const uint8_t *addr, uint8_t len)
{
	uint8_t crc = 0;
	
	while (len--) {
		uint8_t inbyte = *addr++;
		for (uint8_t i = 8; i; i--) {
			uint8_t mix = (crc ^ inbyte) & 0x01;
			crc >>= 1;
			if (mix) crc ^= 0x8C;
			inbyte >>= 1;
		}
	}
	return crc;
}
#endif

#if ONEWIRE_CRC16
bool OneWire::check_crc16(const uint8_t* input, uint16_t len, const uint8_t* inverted_crc, uint16_t crc)
{
    crc = ~crc16(input, len, crc);
    return (crc & 0xFF) == inverted_crc[0] && (crc >> 8) == inverted_crc[1];
}

uint16_t OneWire::crc16(const uint8_t* input, uint16_t len, uint16_t crc)
{
    static const uint8_t oddparity[16] =
        { 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0 };

    for (uint16_t i = 0 ; i < len ; i++) {
      // Even though we're just copying a byte from the input,
      // we'll be doing 16-bit computation with it.
      uint16_t cdata = input[i];
      cdata = (cdata ^ crc) & 0xff;
      crc >>= 8;

      if (oddparity[cdata & 0x0F] ^ oddparity[cdata >> 4])
          crc ^= 0xC001;

      cdata <<= 6;
      crc ^= cdata;
      cdata <<= 1;
      crc ^= cdata;
    }
    return crc;
}
#endif

#endif
9-Réaliser le cablage suivant http://labalec.fr/erwan/?p=1508
10-Pour que ca fonctionne j'ai eu besoin de télécharger et d'installer tiny8x pcrel patch.zip récupéréhttp://forum.arduino.cc/index.php?topic=116674.0 ou en direct http://forum.arduino.cc/index.php?actio ... tach=22984
(pour l'installation il suffit de coller le fichier a la fin de l'arborescence (vérifier que la date de modification est bien changer))
Message d'erreur si non installé:

Code : Tout sélectionner

This report would have more information with
  "Show verbose output during compilation"
  enabled in File > Preferences.
Arduino: 1.0.6 (Windows XP), Board: "ATtiny85 (internal 8 MHz clock)"
c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25/crttn85.o:(.init9+0x2): relocation truncated to fit: R_AVR_13_PCREL against symbol `exit' defined in .fini9 section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_exit.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setHumidity(unsigned char*, unsigned char)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:277: relocation truncated to fit: R_AVR_13_PCREL against symbol `__udivmodqi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_udivmodqi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:278: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulhi3' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_mulhi3.o)
rf433_sendOOK_at85_dht11.cpp.o: In function `setTemperature(unsigned char*, float)':
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:256: relocation truncated to fit: R_AVR_13_PCREL against symbol `__fixsfsi' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(fixsfsi.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:257: relocation truncated to fit: R_AVR_13_PCREL against symbol `__divmodhi4' defined in .text.libgcc section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/avr25\libgcc.a(_divmodhi4.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__floatsisf' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(floatsisf.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:258: relocation truncated to fit: R_AVR_13_PCREL against symbol `round' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(round.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: relocation truncated to fit: R_AVR_13_PCREL against symbol `__mulsf3' defined in .text.fplib section in c:/program files/arduino/hardware/tools/avr/bin/../lib/gcc/avr/4.3.2/../../../../avr/lib/avr25\libm.a(mulsf3.o)
C:\Program Files\Arduino/rf433_sendOOK_at85_dht11.ino:260: additional relocation overflows omitted from the output
11-Puis comme d’écrit:
-télécharger le fichier de paramétrage de l'attiny http://labalec.fr/erwan/wp-content/uplo ... attiny.zip et l'installer dans Documents\Arduino\hardware (soit au final Documents\Arduino\hardware\attiny\variants...)

-et la mettre dans Documents\Arduino\ (il y aura donc dans arduino 5 dossiers + 4 fichiers)
-Démarrer le soft Arduino
-faire fichier/exemples/arduinoisp
-Ouvrir votre script "rf433_sendOOK_at85_ds18b20.ino"
- dans outils/programmateur faire « arduino as isp »
- dans outils\type de carte choisir « attiny85 (8mhz) »
-Faire compiler
-Puis outils/graver la séquence d'initialisation
-Apparition d'un pseudo message d'erreur
-Puis téléverser.
-Apparation d'un pseudo message d'erreur
-Fermer
-Réaliser le branchement qui va bien http://labalec.fr/erwan/?p=1520
-Enjoy

Et après quelques soudure:
Image
http://img15.hostingpics.net/pics/354568sondeo.jpg
Image
http://img15.hostingpics.net/pics/144889sondef.jpg

J'approfondi bientot

Commentaire:
vil1driver a écrit :salut,

merci pou le tuto..

petit complément.

pour installer le support attiny sur un IDE 1.6.x
il faut aller dans les préférences de l'IDE

fichier > préférences

Image
puis dans la section “Additional Boards Manager URLs” copier cette url

Code : Tout sélectionner

https://raw.githubusercontent.com/damellis/attiny/ide-1.6.x-boards-manager/package_damellis_attiny_index.json
en suite il suffit d'aller dans le gestionnaire de carte

Image

rechercher "attiny"
et cliquer sur "Install"

Image
Image

vous pourrez en suite sélectionner votre carte attiny, sa fréquence d'horloge, etc..

Image

Source

il faudra peut-être également regrouper la partie sonde DHT11/22 de ce tuto,
car la librairie prend en compte les 2 et le sketch devrait également être commun à ces 2 sondes.
la dht22 est simplement plus précise que la dht11.
Modifié en dernier par mulot35 le 19 mars 2016, 20:48, modifié 10 fois.
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

deennoo
Messages : 4006
Enregistré le : 25 janv. 2015, 02:00

Re: [diy] Fabriquer sonde radio Oregon

Message par deennoo » 04 févr. 2015, 15:28

pour arduino tu as ce script :

https://github.com/equinoxefr/gasMonitor

tu n as qu a le modifier pour enlever la partie compteur a gaz.

Par contre tu bosse avec une atmega 328p et pas une tiny 85
De quoi se faire Plaisir et essayer d'aider...
http://www.domo-attitude.fr

mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

Re: [diy] Fabriquer sonde radio Oregon

Message par mulot35 » 04 févr. 2015, 17:09

Non mais j'ai le script qui va bien http://labalec.fr/erwan/wp-content/uplo ... _dht11.txt mais j'ai aucune notion avec arduino et en fusionnant les tutos de droite et de gauche je n'arrive pas a téléverser le script dans l'attiny85.
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

Disable adblock

This site is supported by ads and donations.
If you see this text you are blocking our ads.
Please consider a Donation to support the site.


deennoo
Messages : 4006
Enregistré le : 25 janv. 2015, 02:00

Re: [diy] Fabriquer sonde radio Oregon

Message par deennoo » 04 févr. 2015, 18:28

J y connais pas grand chose mais je suivrais ce tuto a la lettre

http://forum.arduino.cc/index.php?topic=150870.0
De quoi se faire Plaisir et essayer d'aider...
http://www.domo-attitude.fr

mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

Re: [diy] Fabriquer sonde radio Oregon

Message par mulot35 » 05 févr. 2015, 16:58

Merci pour le tuto j'arriv bien a le faire.
Donc c'est soit un problème de librairie (je viens d'envoyer un message au redacteur de l'article) ou du scripts...
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

deennoo
Messages : 4006
Enregistré le : 25 janv. 2015, 02:00

Re: [diy] Fabriquer sonde radio Oregon

Message par deennoo » 05 févr. 2015, 22:29

Bon comme je me suis fait le montage d'Equinox pour mon compteur a GAZ mais avec une atmega328p-pu a 8mhz et en 3.3v et qu'il a fallut mettre les mains dans le caca, je vais essayer de t aider.

Ton script semble copier une THN132N (soit une sonde qui normalement ne fait que temperature : http://www.oregonscientificstore.com/Or ... ensor.data) c'est clair dans le skecth

line 338 a 344 :

#ifdef THN132N
// Create the Oregon message for a temperature only sensor (TNHN132N)
byte ID[] = {0xEA,0x4C};
#else
// Create the Oregon message for a temperature/humidity sensor (THGR2228N)
byte ID[] = {0x1A,0x2D};
#endif


On peut le verifier au debut du sketch line 51 : #define THN132N

J'ai quasiment le meme script pour ma sonde de piscine a base atmega 328.

Il semble que ce soit un probleme IDE Arduino ton probleme.

Essaye avec la version 1.5.8 beta

http://arduino.cc/en/pmwiki.php?n=main/software

Je rencontre également régulierement des soucis de compilation avec les IDE arduino et suis obliger de basculer de l un a l autre a chaque fois.
De quoi se faire Plaisir et essayer d'aider...
http://www.domo-attitude.fr

mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

Re: [diy] Fabriquer sonde radio Oregon pour les nuls

Message par mulot35 » 07 févr. 2015, 09:31

Salut,
Suite a la réponse de "Erwan's Blog" je me suis débloqué sur ces histoires d'arduino et j'ai fait un pas a pas de deux pages du ""Erwan's Blog" pour réalisé des sondes rf433 en dht11 et ds18b20 reconnu en sonde Oregon par domoticz (pour environ 5€).
J'ai donc édité mes deux premier messages.
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

mulot35
Messages : 200
Enregistré le : 20 déc. 2014, 00:27

Re: [diy] Fabriquer sonde radio Oregon pour les nuls

Message par mulot35 » 09 févr. 2015, 22:32

Voila ma première sonde ds18b20 fini pour 4.5€ (hors piles).

Image
Image
La batterie est reconnu comme faible
Signal a 7 a 3 mètres
Image
Raspi B+ avec Domoticz ,6 Chacon 2300W , 6 Sondes Oregon, 1 Sonde DIY Oregon ds18b20, Téléinfo sur photovoltaique, script backup ftp & anti offline.

activa73
Messages : 12
Enregistré le : 10 févr. 2015, 12:12

Re: [diy] Fabriquer sonde radio Oregon pour les nuls

Message par activa73 » 10 févr. 2015, 12:17

Bonjour,

merci pour ce tutoriel.
Est il compatible avec une sonde DHT22 pour pouvoir récupérer les infos de températures et d’humidité?
Si non quelles sont les modifications a apporter au scripts pour que cela fonctionne?

Le but est de simuler une sonde Oregon THGN132N.

Je vous remercie par avance pour votre aide.

Disable adblock

This site is supported by ads and donations.
If you see this text you are blocking our ads.
Please consider a Donation to support the site.


Répondre